
Test-Driven Specification: Paradigm and Automation
Edward L. Jones

Florida A&M University
Tallahassee, Florida
850-599-3050 USA

ejones@cis.famu.edu

ABSTRACT
This paper introduces test-driven specification, whereby the
specification process is aided by the use of test cases. We also
introduce an automated tool, the test-driven specification assistant
(TDSA), which supports this approach. Test cases reveal
specification anomalies such as incorrectness, incompleteness and
ambiguity. Specification-based test coverage criteria are applied
to reveal deficiencies in the set of test cases. Decision tables are
used as a lightweight specification language capable of modeling
black-box and Mills’ state box specifications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Programming environments –
interactive environment.

General Terms
Design, Verification.

Keywords
Specification-driven testing, decision table, model-based
testing, state box, functional coverage.

1. INTRODUCTION
Test-driven development, popularized by Extreme Programming,
engages the developer in the dual role of tester and developer.
When combined with pair programming, evidence shows
improved software quality [10]. Quality improvements can result
from a number of factors, including the positive effects of pair
programming, the focus on testing before coding, or the type of
application being developed.

This paper introduces test-driven specification, in which the
specification process is aided by the use of test cases. We also
introduce an automated tool, the test-driven specification assistant
(TDSA), which supports this approach. Test data are used to
reveal specification anomalies such as incorrectness,
incompleteness and ambiguity. Specification-based test coverage
criteria are applied to reveal deficiencies in the set of test cases.
We seek the same type of synergism between specification and

testing as is suggested by test-driven development.

The choice of specification language or notation is important.
Despite current advances in formal methods in software
engineering, widespread use has not yet occurred. Lightweight
formalisms, which provide intuitive and visual representations,
are preferred. In this paper, we use the decision table as the
lightweight specification language of choice. In addition to being
intuitive and graphical, decision tables are capable of modeling
simple black-box functional behavior as well as more complex,
state-based behavior like Mill’s state box specifications [5].

Test-driven specification is also motivated by Hoffman’s
specification-by-example approach described in [7], “Prose
+ Test Cases = Specification.” They faced the problem of
providing clear and accurate documentation for API
software. Their solution was to provide prose descriptions
augmented with test cases to improve the precision of the
prose description. Although formal specifications provide
precision and the potential for automated analysis, few
developers are skilled in writing or reading them.

A motivation of this work is the belief that the power a
specification notation or model is not realized unless the model
can be given “life”, i.e., be made dynamic so that the software
developer can interact with the model. Interaction is essential to
the development of a high quality model, and should be employ
representative usage examples to communicate intent. Interaction
tools facilitated the adoption of Parnas’ SCR methodology [4].

We propose that the model be made executable and capable of
emulating the cause-effect/stimulus-response intents encoded in
the model. The executable model, when presented with
representative inputs (stimuli), produces responses specified in the
model [2]. An automated toolset provides analysis capabilities
such as those found in model checking, e.g., the ability to detect
anomalies in the model, and those found in testing tools, e.g.,
computing coverage measures for a given set of test stimuli. Our
approach is unique in its objectives – to unite specification and
testing – and in our desire to provide open source tools to a broad
community of users.

2. AN EXAMPLE
We include an example of a state-based specification (Figure 1),
and show the evolution of the decision-table specification and test
set. We discuss specification anomalies – incompleteness, and
ambiguity and incorrectness, and give examples of test data that
reveal these anomalies. We also show how the decision table
based coverage criterion [1,13] is used to reveal deficiencies in
the test data set.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 1-59593-315-8/06/0004…$5.00.

796

Specification for Garage Door Keypad: The garage door opener
requires the sequence of keystrokes 2-6-3. Once this sequence is
entered, the door opens, and all subsequent keystrokes are
ignored. An audible beep is emitted for each keystroke except the
keystroke that completes the open sequence, for which the audible
message “DOOR OPENING” is emitted.

The TDSA toolset includes a library of utilities along with the
generator tool, tdsaGEN. Given a decision table dtb_P for a
program P, tdsaGEN generates a test driver and a self-
instrumenting executable decision table class. The
instrumentation gathers data from which three reports are
generated: the test coverage report identifies the rules satisfied by
each test case; the specification anomalies report identifies
missing or ambiguous rules (one test case satisfies multiple rules);
and the test oracle report, which shows, for each test vector, the
expected values of the response variables and state variables. The
specification of oracles need not be computational, but may
instead be annotation describing the succinct sequence of
responses expected from the system.

3. RELATED WORK
As a simple formalism, decision tables have an intuitive appeal
and are suitable for reasoning about the cause-effect behavior of
software. Studies have demonstrated that decision tables are an
effective specification notation, especially as specifications grow
in size and complexity [3,9].

Vanthienen and others have done much to advance the use of
decision tables in knowledge engineering, artificial intelligence,
and decision support systems [6,11,12]. Vanthienen’s Prologa tool
automates the creation, verification, and optimization of decision
tables. Because decision tables are models, they can be
malformed or otherwise exhibit anomalies such as redundancy,
ambiguity or incompleteness. Prologa and the other decision table
tools place certain restrictions on the size and style of decision
table supported and assumptions about how to handle the
combinatorial explosion of rules.

Although there are limitations to the applicability of decision
tables, typical software contains many components whose
behavior can be specified as a decision table. Textbooks on
software testing routinely introduce decision tables as a technique
that can be used as the basis for test case design [1].

4. ONGOING AND FUTURE WORK
The TDSA toolset establishes an important link between
specification, which occurs early in the software lifecycle, and
testing, which occurs at the end. The toolset can improve both the
quality of test data and the quality of the specification used to
develop the software and to create test cases.

In the future, we will consider the use of random test data
generation to drive the specification refinement process. We are

extending this work to the specification of object-oriented
software as collection of models (for methods) that share a
common (object) state. We are also investigating interfaces to
pre/post-condition and state-based specifications. Finally, we are
working to integrate TDSA into an Eclipse environment.

5. ACKNOWLEDGMENTS
This work was partially supported by NSF Minority Institutions
Infrastructure Grant #0424556, and by a grant from the Medtronic
Foundation.

6. REFERENCES
[1] Binder, R.V., Testing Object-Oriented Systems: Models,

Patterns, and Tools, Addison-Wesley, 1999.
[2] Clark, M., “Support for Automated Specification-Based

Testing Using Executable Decision Tables,” Proceedings of
ADMI 2005, Rincon, Puerto Rico, Oct. 13-15, 2005, 16-25.

[3] Glora, N., G., Pu, H. and Rom, W.O. Evaluation of Process
Tools in Systems Analysis, Information and Technology 37,
2 (1995), 119-126.

[4] Heitmeyer, C., Using the SCR* Toolset to Specify Software
Requirements, Proceedings of the 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques, 1998,
12-13.

[5] Hevner, A.R. and Mills, H.D., Box structured methods for
system development with objects, IBM Systems Journal
Volume 32, No 2 (1993), 232-251.

[6] Hewett, R. and Leuchner, J., Restructuring decision tables
for elucidation of knowledge, Data & Knowledge
Engineering 46 (2003), 271–290.

[7] Hoffman, D. and Strooper, P., Prose + Test Cases =
Specification, Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 34'00), 239-252.

[8] Jones, E.L., Automated Support for Test-Driven
Specification, Proceedings of the 9th IASTED Conference on
Software Engineering and Applications (SEA2005),
November 14-16, 2005, Phoenix, Arizona, 218-223.

[9] Lagenwalter, D., Decision Tables – An Effective
Programming Tool, Proc. 1st SIGMINI Symposium on Small
Systems, 1978, 77-85.

[10] Maximilien, E.M. and Williams, L., Assessing Test-Driven
Development at IBM, Proceedings of the 25th International
Conf on Software Engineering, 2003, 564-569.

[11] Vanthienen, J. and Dries, E., Illustration of a decision table
tool for specifying and implementing knowledge based
systems, International Journal on Artificial Intelligence
Tools 3 (2) (1994) 267–288.

[12] Vanthienen, J., Dries E. and Keppens, J., Clustering
Knowledge in Tabular Knowledge Bases, Proceedings of the
8th International Conference on Tools with Artificial
Intelligence (ITTAI ’96), 1996, 88-95.

[13] Zhu, H., Hall, P. and May, J., Software Unit Test Coverage
and Adequacy, ACM Comp. Surveys 29, 4 (1997), 364-42.

Open
Garage

Door

feedback key

Figure 1. Black-Box Schematic for Open Garage Door

797

