
Unifying User-based and Item-based Collaborative
Filtering Approaches by Similarity Fusion

Jun Wang1, Arjen P. de Vries1,2, Marcel J.T. Reinders1

Information and Communication Theory Group1,
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

CWI2, Amsterdam, The Netherlands

{jun.wang,m.j.t.reinders}@tudelft.nl, arjen@acm.org

ABSTRACT
Memory-based methods for collaborative filtering predict
new ratings by averaging (weighted) ratings between, re-
spectively, pairs of similar users or items. In practice, a
large number of ratings from similar users or similar items
are not available, due to the sparsity inherent to rating data.
Consequently, prediction quality can be poor. This paper re-
formulates the memory-based collaborative filtering problem
in a generative probabilistic framework, treating individual
user-item ratings as predictors of missing ratings. The final
rating is estimated by fusing predictions from three sources:
predictions based on ratings of the same item by other users,
predictions based on different item ratings made by the same
user, and, third, ratings predicted based on data from other
but similar users rating other but similar items. Existing
user-based and item-based approaches correspond to the
two simple cases of our framework. The complete model is
however more robust to data sparsity, because the different
types of ratings are used in concert, while additional ratings
from similar users towards similar items are employed as a
background model to smooth the predictions. Experiments
demonstrate that the proposed methods are indeed more ro-
bust against data sparsity and give better recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Filtering

General Terms
Algorithms, Performance, Experimentation

Keywords
Recommender Systems, Collaborative Filtering, Smoothing,
Similarity Fusion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06,August 6–11, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

1. INTRODUCTION
Collaborative filtering aims at predicting the user inter-

est for a given item based on a collection of user profiles.
Commonly, these profiles either result from asking users ex-
plicitly to rate items or are inferred from log-archives ([7]).
Research started with memory-based approaches to collabo-
rative filtering, that can be divided in user-based approaches
like [1, 5, 9, 14] and item-based approaches like [3, 15]. The
former approaches form a heuristic implementation of the
“Word of Mouth” phenomenon. Memory-based approaches
are widely used in practice, e.g., [5, 11].

Given an unknown test rating (of a test item by a test
user) to be estimated, memory-based collaborative filtering
first measures similarities between test user and other users
(user-based), or, between test item and other items (item-
based). Then, the unknown rating is predicted by averaging
the (weighted) known ratings of the test item by similar
users (user-based), or the (weighted) known ratings of sim-
ilar items by the test user (item-based).

In both cases, only partial information from the data em-
bedded in the user-item matrix is employed to predict un-
known ratings (using either correlation between user data or
correlation between item data). Because of the sparsity of
user profile data however, many related ratings will not be
available for the prediction, Therefore, it seems intuitively
desirable to fuse the ratings from both similar users and sim-
ilar items, to reduce the dependency on often missing data.
Also, methods known previously ignore the information that
can be obtained from ratings made by other but similar users
to the test user on other but similar items. Not using such
ratings causes the data sparsity problem of memory-based
approaches to collaborative filtering: for many users and
items, no reliable recommendation can be made because of
a lack of similar ratings.

This paper sets up a generative probabilistic framework to
exploit more of the data available in the user-item matrix, by
fusing all ratings with predictive value for a recommendation
to be made. Each individual rating in the user-item matrix is
treated as a separate prediction for the unknown test rating
(of a test item from a test user). The confidence of each
individual prediction can be estimated by considering both
its similarity towards the test user and that towards the
test item. The overall prediction is made by averaging the
individual ratings weighted by their confidence. The more
similar a rating towards the test rating, the higher the weight
assigned to that rating to make the prediction. Under this

framework, the item-based and user-based approaches are
two special cases, and these can be systematically combined.
By doing this, our approach allows us to take advantage
of user correlations and item correlations embedded in the
user-item matrix. Besides, smoothing from a background
model (estimated from known ratings of similar items by
similar users) is naturally integrated into our framework to
improve probability estimation and counter the problem of
data sparsity.

The remainder of the paper is organized as follows. We
first summarize related work, introduce notation, and present
additional background information for the two main memory-
based approaches, i.e., user-based and item-based collab-
orative filtering. We then introduce our similarity fusion
method to unify user-based and item-based approaches. We
provide an empirical evaluation of the relationship between
data sparsity and the different models resulting from our
framework, and finally conclude our work.

2. RELATED WORK
Collaborative filtering approaches are often classified as

memory-based or model-based. In the memory-based ap-
proach, all rating examples are stored as-is into memory
(in contrast to learning an abstraction). In the prediction
phase, similar users or items are sorted based on the mem-
orized ratings. Based on the ratings of these similar users
or items, a recommendation for the test user can be gener-
ated. Examples of memory-based collaborative filtering in-
clude user-based methods [1, 5, 9, 14] and item-based meth-
ods [3, 15]. The advantage of the memory-based methods
over their model-based alternatives is that less parameters
have to be tuned; however, the data sparsity problem is not
handled in a principled manner.

In the model-based approach, training examples are used
to generate a model that is able to predict the ratings for
items that a test user has not rated before. Examples in-
clude decision trees [1], aspect models [7, 17] and latent
factor models [2]. The resulting ‘compact’ models solve
the data sparsity problem to a certain extent. However,
the need to tune an often significant number of parameters
has prevented these methods from practical usage. Lately,
researchers have introduced dimensionality reduction tech-
niques to address data sparsity [4, 13, 16]. However, as
pointed out in [8, 19], some useful information may be dis-
carded during the reduction.

Recently, [8] has explored a graph-based method to deal
with data sparsity, using transitive associations between user
and items in the bipartite user item graph. [18] has extended
the probabilistic relevance model in text retrieval ([6]) to the
problem of collaborative filtering and a linear interpolation
smoothing has been adopted. These approaches are however
limited to binary rating data. Another recent direction in
collaborative filtering research combines memory-based and
model-based approaches [12, 19]. For example, [19] clusters
the user data and applies intra-cluster smoothing to reduce
sparsity. The framework proposed in our paper extends this
idea to include item-based recommendations into the final
prediction, and does not require to cluster the data set a
priori.

3. BACKGROUND
This section introduces briefly the user- and item-based

approaches to collaborative filtering [5, 15]. For M items
and K users, the user profiles are represented in a K × M
user-item matrix X (Fig. 1(a)). Each element xk,m = r
indicates that user k rated item m by r, where r ∈ {1, ..., |r|}
if the item has been rated, and xk,m = ∅ means that the
rating is unknown.

The user-item matrix can be decomposed into row vectors:

X = [u1, . . . ,uK]T ,uk = [xk,1, . . . , xk,M]T , k = 1, . . . , K

where T denotes transpose. Each row vector uT
k corresponds

to a user profile and represents a particular user’s item rat-
ings. As discussed below, this decomposition leads to user-
based collaborative filtering.

Alternatively, the matrix can also be represented by its
column vectors:

X = [i1, ..., iM], im = [x1,m, ..., iK,m]T , m = 1, ..., M

where each column vector im corresponds to a specific item’s
ratings by all K users. This representation results in item-
based recommendation algorithms.

3.1 User-based Collaborative Filtering
User-based collaborative filtering predicts a test user’s in-

terest in a test item based on rating information from similar
user profiles [1, 5, 14]. As illustrated in Fig. 1(b), each user
profile (row vector) is sorted by its dis-similarity towards the
test user’s profile. Ratings by more similar users contribute
more to predicting the test item rating. The set of similar
users can be identified by employing a threshold or select-
ing top-N. In the top-N case, a set of top-N similar users
Su(uk) towards user k can be generated according to:

Su(uk) = {ua|rank su(uk,ua) ≤ N, xa,m 6= ∅} (1)

where |Su(uk)| = N . su(uk,ua) is the similarity between
users k and a. Cosine similarity and Pearson’s correlation
are popular similarity measures in collaborative filtering, see
e.g. [1, 5]. The similarity could also be learnt from training
data [9]. This paper adopts the cosine similarity measure,
comparing two user profiles by the cosine of the angle be-
tween the corresponding row vectors.

Consequently, the predicted rating x̂k,m of test item m by
test user k is computed as (see also [1, 5])

x̂k,m = uk +

∑
ua∈Su(uk)

su(uk,ua)(xa,m − ua)

∑
ua∈Su(uk)

su(uk,ua)
(2)

where uk and ua denote the average rating made by users k
and a, respectively.

Existing methods differ in their treatment of unknown
ratings from similar users (xa,m = ∅). Missing ratings can
be replaced by a 0 score, which lowers the prediction, or the
average rating of that similar user could be used [1, 5]. Al-
ternatively, [19] replaces missing ratings by an interpolation
of the user’s average rating and the average rating of his or
her cluster.

Before we discuss its dual method, notice in Eq. 2 and the
illustration in Fig. 1(b) how user-based collaborative filter-
ing takes only a small proportion of the user-item matrix
into consideration for recommendation. Only the known
test item ratings by similar users are used. We refer to
these ratings as the set of ‘similar user ratings’ (the blocks

…… mi Mi1i

,1kx

1,mx

,K mx

,k Mx, ?k mxku

Ku

1u

…
…

mi

ku…
…

,1kx ,k Mx, ?k mx

S
orted U

ser D
is-sim

ilarity

R
ating P

rediction

Unknown Rating

SUR

mi … …Sorted Item Dis-similarity

1,mx

,K mx

ku , ?k mx
Rating Prediction

SIR

Unknown Rating

mi …

, ?k mxku

…
…

S
orted U

ser D
is-sim

ilarity

… Sorted Item Dis-similarity

SIR

Unknown Rating

SUIR

SUR

Rating PredictionRating Prediction

(a) (b) (c) (d)

Figure 1: (a) The user-item matrix (b) Rating prediction based on user similarity (c) Rating prediction based
on item similarity (d) Rating prediction based on rating similarity.

with upward diagonal pattern in Fig. 1(b)): SURk,m =
{xa,m|ua ∈ Su(uk)}. For simplicity, we drop the subscript
k, m of SURk,m in the remainder of the paper.

3.2 Item-based Collaborative Filtering
Item-based approaches such as [3, 11, 15] apply the same

idea, but use similarity between items instead of users. As
illustrated in Fig. 1(c), the unknown rating of a test item by
a test user can be predicted by averaging the ratings of other
similar items rated by this test user [15]. Again, each item
(column vector) is sorted and re-indexed according to its
dis-similarity towards the test item in the user-item matrix,
and, ratings from more similar items are weighted stronger.
Formally (see also [15]),

x̂k,m =

∑
ib∈Si(im)

si(im, ib)(xk,b)∑
ib∈Si(im)

si(im, ib)
(3)

Where item similarity si(im, ib) can be approximated by the
cosine measure or Pearson correlation [11, 15]. To remove
the difference in rating scale between users when computing
the similarity, [15] has proposed to adjust the cosine sim-
ilarity by subtracting the user’s average rating from each
co-rated pair beforehand. We adopt this similarity measure
in this paper. Like the top-N similar users, a set of top-N
similar items towards item m, denoted as Si(im), can be
generated according to:

Si(im) = {ib|rank si(im, ib) ≤ N, xk,b 6= ∅} (4)

Fig. 1(c) illustrates how Eq. 3 takes only the known simi-
lar item ratings by the test user into account for prediction.
We refer to these ratings as the set of ‘similar item ratings’
(the blocks with downward diagonal pattern in Fig. 1(c)):
SIRk,m = {xk,b|ib ∈ Si(im)}. Again, for simplicity, we drop
the subscript k, m of SIRk,m in the remainder of the paper.

4. SIMILARITY FUSION
Relying on SUR or SIR data only is undesirable, espe-

cially when the ratings from these two sources are quite of-
ten not available. Consequently, predictions are often made
by averaging ratings from ‘not-so-similar’ users or items. We
propose to improve the accuracy of prediction by fusing the
SUR and SIR data, to complement each other under the
missing data problem.

Additionally, we point out that the user-item matrix con-
tains useful data beyond the previously used SUR and SIR
ratings. As illustrated in Fig. 1 (d), the similar item ratings
made by similar users may provide an extra source for pre-
diction. They are obtained by sorting and re-indexing rows

and columns according to their dis-similarities towards the
test user and the test item respectively. In the remainder,
this part of the matrix is referred to as ‘similar user item rat-
ings’ (the grid blocks in Fig. 1(d)): SUIRk,m = {xa,b|ua ∈
Su(uk), ib ∈ Si(im), a 6= k, b 6= m}. The subscript k, m of
SUIRk,m is dropped.

Combining these three types of ratings in a single collab-
orative filtering method is non-trivial. We propose to treat
each element of the user-item matrix as a separate predictor.
Its reliability or confidence is then estimated based upon its
similarity towards the test rating. We then predict the test
rating by averaging the individual predictions weighted by
their confidence. The remainder of the section gives a prob-
abilistic formulation for the proposed method.

4.1 Individual Predictors
Users rate items differently. Some users have a prefer-

ence for the extreme values of the rating scale, while others
rarely deviate from the median. Likewise, items may be
rated by different types of users. Some items get higher rat-
ings than their ‘true’ value, simply because they have been
rated by a positive audience. Addressing the differences in
rating behavior, we first normalize the user-item matrix be-
fore making predictions.

Removing the mean ratings per user and item gives indi-
vidual predictions as

pk,m(xa,b) = xa,b − (x̄a − x̄k)− (x̄b − x̄m) (5)

where pk,m(xa,b) is the prediction function for the test item
k rating made by test user m, x̄a and x̄k are the average rat-
ings by user a and k, and x̄b and x̄m are the average ratings
of item b and m. Appendix A derives that normalizing the
matrix by independently subtracting the row and column
means gives the same result.

4.2 Probabilistic Fusion Framework
Let us first define the sample space of ratings as Φr =

{∅, 1, ..., |r|} (like before, ∅ denotes the unknown rating).
Let xa,b be a random variable over the sample space Φr,
captured in the user-item matrix, a ∈ {1, . . . , K} and b ∈
{1, . . . , M}. Collaborative filtering then corresponds to es-
timating conditional probability P (xk,m|Pk,m), for an un-
known test rating xk,m, given a pool of individual predictors

Pk,m = {pk,m(xa,b)|xa,b 6= ∅}.

Consider first a pool that consists of SUR and SIR ratings
only (i.e., xa,b ∈ (SUR ∪ SIR)).

P (xk,m|SUR,SIR)

≡ P (xk,m|{pk,m(xa,b)|xa,b ∈ SUR ∪ SIR}) (6)

We write P (xk,m|SUR,SIR) for the conditional probability
depending on the predictors originating from SUR and SIR.
Likewise, P (xk,m|SUR) and P (xk,m|SIR) specify a pool con-
sisting of SUR or SIR predictors only.

Now introduce a binary variable I1, that corresponds to
the relative importance of SUR and SIR. This hidden vari-
able plays the same role as the prior introduced in [6] to cap-
ture the importance of a query term in information retrieval.
I1 = 1 states that xk,m depends completely upon ratings
from SUR, while I1 = 0 corresponds to full dependency on
SIR. Under these assumptions, the conditional probability
can be obtained by marginalization of variable I1:

P (xk,m|SUR,SIR)

=
∑
I1

P (xk,m|SUR,SIR, I1)P (I1|SUR,SIR)

= P (xk,m|SUR,SIR, I1 = 1)P (I1 = 1|SUR,SIR)+

P (xk,m|SUR,SIR, I1 = 0)P (I1 = 0|SUR,SIR) (7)

By definition, xk,m is independent from SUR when I1 = 1,
so P (xk,m|SUR,SIR, I1 = 1) = P (xk,m|SUR). Similarly,
P (xk,m|SUR,SIR, I1 = 0) = P (xk,m, |SIR). If we provide a
parameter λ as shorthand for P (I1 = 1|SUR,SIR), we have

P (xk,m|SUR,SIR)

= P (xk,m|SUR)λ + P (xk,m|SIR)(1− λ) (8)

Next, we extend the model to take into account the SUIR
ratings:

P (xk,m|SUR,SIR,SUIR)

≡ P (xk,m|{pk,m(xk,m)|xa,b ∈ SUR ∪ SIR ∪ SUIR}) (9)

We introduce a second binary random variable I2, that
corresponds to the relative importance of the SUIR predic-
tors. I2 = 1 specifies that the unknown rating depends on
ratings from SUIR only and I2 = 0 that it depends on the
ratings from SIR and SUR instead. Marginalization on vari-
able I2 gives:

P (xk,m|SUR,SIR,SUIR)

=
∑
I2

P (xk,m|SUR,SIR,SUIR, I2)P (I2|SUR,SIR,SUIR)

= P (xk,m|SUR,SIR,SUIR, I2 = 1)·
P (I2 = 1|SUR,SIR,SUIR)+

P (xk,m|SUR,SIR,SUIR, I2 = 0)·
(1− P (I2 = 1|SUR,SIR,SUIR)) (10)

Following the argument from above and providing a param-
eter δ as shorthand for P (I2 = 1|SUR,SIR,SUIR), we have

P (xk,m|SUR,SIR,SUIR)

= P (xk,m|SUR,SIR)(1− δ) + P (xk,m|SUIR)δ (11)

Substitution of Eq. 8 then gives:

P (xk,m|SUR,SIR,SUIR)

=
(
P (xk,m|SUR)λ + P (xk,m|SIR)(1− λ)

)
(1− δ)+

P (xk,m|SUIR)δ (12)

Finally, the following equation gives the expected value of
the unknown test rating:

x̂k,m =

|r|∑
r=1

rP (xk,m = r|SUR,SIR,SUIR)

=
(|r|∑

r=1

rP (xk,m = r|SUIR)δ
)
+

(|r|∑
r=1

rP (xk,m = r|SUR)λ(1− δ)
)
+

(|r|∑
r=1

rP (xk,m = r|SIR)(1− λ)(1− δ)
)

(13)

The resulting model can be viewed as using importance sam-
pling of the neighborhood ratings as predictors. λ and δ con-
trol the selection (sampling) of data from the three different
sources.

4.3 Probability Estimation
The next step is to estimate the probabilities in the fusion

framework expressed in Eq. 13.
λ and δ are determined experimentally by using the cross-

validation, for example following the methodology of Section
5.3. The three remaining probabilities can be viewed as
estimates of the likelihood of a rating xa,b from SIR, SUR, or
SUIR, to be similar to the test rating xk,m. We assume that
the probability estimates for SUR and SIR are proportional
to the similarity between row vectors su(uk,ua) (Section
3.1) and column vectors si(im, ib) (Section 3.2), respectively.
For SUIR ratings, we assume the probability estimate to be
proportional to the combination of su and si. To combine
them, we use a Euclidean dis-similarity space such that the
resulting combined similarity is lower than either of them.

sui(xk,m, xa,b) =
1√

(1/su(uk,ua))2 + (1/si(im, ib))2
(14)

This results in the following conditional probability esti-
mates:

P (xk,m = r|SUR)

=

∑
∀xa,b:(xa,b∈SUR)∧(pk,m(xa,b)=r)

su(uk,ua)

∑
∀xa,b:xa,b∈SUR

su(uk,ua)

P (xk,m = r|SIR)

=

∑
∀xa,b:(xa,b∈SIR)∧(pk,m(xa,b)=r)

si(im, ib)

∑
∀xa,b:xa,b∈SIR

si(im, ib)

P (xk,m = r|SUIR)

=

∑
∀xa,b:(xa,b∈SUIR)∧(pk,m(xa,b)=r)

sui(xk,m, xa,b)

∑
∀xa,b:xa,b∈SUIR

sui(xk,m, xa,b)
(15)

Table 1: Percentage of the ratings that are available (6= ∅).
test item 1st most sim. item 2nd most sim item 3rd most sim. item 4th most sim. item

test user - 0.58 0.56 0.55 0.54
1st most sim. user 0.54 0.58 0.58 0.58 0.57
2nd most sim. user 0.51 0.56 0.56 0.56 0.56
3rd most sim. user 0.51 0.57 0.57 0.57 0.56
4th most sim. user 0.49 0.55 0.55 0.56 0.55

Table 2: Mean Absolute Err (MAE) of individual predictions.
test item 1st most sim. item 2nd most sim. item 3rd most sim. item 4th most sim. item

test user - 0.824 0.840 0.866 0.871
1st most sim. user 0.914 0.925 0.927 0.942 0.933
2nd most sim. user 0.917 0.921 0.931 0.935 0.927
3rd most sim. user 0.927 0.947 0.952 0.953 0.945
4th most sim. user 0.928 0.929 0.939 0.946 0.932

After substitution from Eq. 15 (for readability, we put the
detailed derivations in Appendix B), Eq. 13 results in:

x̂k,m =
∑
xa,b

pk,m(xa,b)W
a,b
k,m (16)

where

W a,b
k,m =



su(uk,ua)∑
xa,b∈SUR

su(uk,ua)
λ(1− δ) xa,b ∈ SUR

si(im,ib)∑
xa,b∈SIR

si(im,ib)
(1− λ)(1− δ) xa,b ∈ SIR

sui(xk,m,xa,b)∑
xa,b∈SUIR

sui(xk,m,xa,b)
δ xa,b ∈ SUIR

0 otherwise

(17)

It is easy to prove that
∑

xa,b

W a,b
k,m = 1. W a,b

k,m acts as a

unified weight matrix to combine the predictors from the
three different sources.

4.4 Discussion
Sum as Combination Rule λ and δ control the impor-

tance of the different rating sources. Their introduction re-
sults in a sum rule for fusing the individual predictors (Eq.
12 and 16.). Using the independence assumption on the
three types of ratings and the Bayes’ rule, one can easily de-
rive a product combination from the conditional probability
([10]). However, the high sensitivity to estimation errors
makes this approach less attractive in practice. We refer to
[10] for a more detailed discussion of using a sum rule vs.
the product rule for combing classifiers.

Unified Weights The unified weights in Eq. 17 provide
a generative framework for memory-based collaborative fil-
tering.

Eq. 17 shows how our scheme can be considered as two
subsequent steps of linear interpolation. First, predictions
from SUR ratings are interpolated with SIR ratings, con-
trolled by λ. Next, the intermediate prediction is interpo-
lated with predictions from the SUIR data, controlled by
δ. Viewing the SUIR ratings as a background model, the
second interpolation corresponds to smoothing the SIR and
SUR predictions from the background model.

A bigger λ emphasizes user correlations, while smaller λ
emphasizes item correlations. When λ equals one, our algo-
rithm corresponds to a user-based approach, while λ equal
to zero results in an item-based approach.

Tuning parameter δ controls the impact of smoothing from
the background model (i.e. SUIR). When δ approaches zero,
the fusion framework becomes the mere combination of user-
based and item-based approaches without smoothing from
the background model.

5. EMPIRICAL EVALUATION

5.1 Experimental Setup
We experimented with the MovieLens1, EachMovie2, and

book-crossing3 data sets. While we report only the Movie-
Lens results (out of space considerations), the model behaves
consistently across the three data sets.

The MovieLens data set contains 100,000 ratings (1-5 scales)
from 943 users on 1682 movies (items), where each user has
rated at least 20 items. To test on different number of train-
ing users, we selected the users in the data set at random
into a training user set (100, 200, 300 training users, respec-
tively) and the remaining users into a test user set. Users in
the training set are only used for making predictions, while
test users are the basis for measuring prediction accuracy.
Each test user’s ratings have been split into a set of observed
items and one of held-out items. The ratings of observed
items are input for predicting the ratings of held-out items.

We are specifically interested in the relationship between
the density of the user-item matrix and the collaborative
filtering performance. Consequently, we set up the following
configurations:

• Test User Sparsity Vary the number of items rated
by test users in the observed set, e.g., 5, 10, or 20
ratings per user.

• Test Item Sparsity Vary the number of users who
have rated test items in the held-out set; less than 5,
10, or 20 (denoted as ‘< 5’, ‘< 10’, or ‘< 20’), or,
unconstrained (denoted as ‘No constraint’).

• Overall Training User Sparsity Select a part of
the rating data at random, e.g., 20%, 40%, 60% of the
data set.

For consistency with experiments reported in the literature,
e.g., [9, 15, 19]), we report the mean absolute error (MAE)
evaluation metric. MAE corresponds to the average absolute
deviation of predictions to the ground truth data, for all test
item ratings and test users:

MAE =

∑
k,m

|xk,m − x̂k,m|

L
, (18)

where L denotes the number of tested ratings. A smaller
value indicates a better performance.

1http://www.grouplens.org/
2http://research.compaq.com/SRC/eachmovie/
3http://www.informatik.uni-freiburg.de/∼cziegler/
BX/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

lambda

M
AE

Rating Per User: 5, Rating Per Item: 5
Rating Per User: 5
Rating Per User: 20, Rating Per Item: 5
Rating Per User: 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

delta

M
AE

Rating Per User: 5, Rating Per Item: 5
Rating Per User: 5
Rating Per User: 20, Rating Per Item: 5
Rating Per User: 20

(a) Lambda (b) Delta

Figure 2: Impact of the two parameters.

0 50 100 150 200 250 300 350 400 450 500
0.765

0.77

0.775

0.78

0.785

0.79

0.795

Num. of Neighborhood Ratings

M
A

E

SF2

Figure 3: Size of neighborhood.

5.2 Individual Predictors
We first report some properties of the three types of in-

dividual predictions used in our approach. Table 1 illus-
trates the availability of the top-4 neighborhood ratings in
the MovieLens data set. The first column contains the top-4
SUR ratings, the first row the top-4 SIR ratings; the remain-
ing cells correspond to the top-4x4 SUIR ratings. We ob-
serve that only about half of these ratings are given. Table
2 summarizes recommendation MAE of individual predic-
tors (applying Eq. 5) using leave-one-out cross-validation.
Clearly, more similar ratings provide more accurate predic-
tions. While SUIRs ratings are in general less accurate than
SURs and SIRs, these may indeed complement missing or
unreliable SIR and SUR ratings.

5.3 Impact of Parameters
Recall the two parameters in Eq. 17: λ balances the pre-

dictions between SUR and SIR, and δ smoothes the fused
results by interpolation with a pool of SUIR ratings.

We first test the sensitivity of λ, setting δ to zero. This
scheme, called SF1, combines user-based and item-based ap-
proaches, but does not use additional background informa-
tion. Fig. 2(a) shows recommendation MAE against vary-
ing λ from zero (a pure item-based approach) to one (a pure
user-based approach). The graph plots test user sparsity
5 and 20, and test item sparsity settings ‘< 5’ and uncon-
strained. The value of the optimal λ demonstrates that in-
terpolation between user-based and item-based approaches
(SF1) improves the recommendation performance. More
specifically, the best results are obtained with λ between 0.6
and 0.9. This optimal value emphasizing the SUR ratings
may be somewhat surprising, as Table 2 indicated that the
SIR ratings should be more reliable for prediction. How-
ever, in the data sets considered, the number of users is
smaller than the number of items, causing the user weights
su(uk,ua) to be generally smaller than the item weights
si(im, ib). When removing the constraint on test item spar-
sity, the optimal λ shifts down from about 0.9 for the two
upper curves (‘< 5’) to 0.6 for the two lower curves (un-
constrained). A lower λ confirms the expectation that SIR
ratings gain value when more items have been rated.

Fig. 2 (b) shows the sensitivity of δ after fixing λ to 0.7.
The graph plots the MAE for the same four configurations
when parameter δ is varied from zero (without smoothing)
to one (rely solely on the background model: SUIR ratings).
When δ is non-zero, the SF1 results are smoothed by a pool

of SUIR ratings, which we called fusion scheme SF2. We
observe that δ reaches its optimal in 0.8 when the rating
data is sparse in the neighborhood ratings from the item and
user aspects (upper two curves). In other words, smoothing
from a pool of SUIR ratings improves the performance for
sparse data. However, when the test item sparsity is not
constrained, its optimum spreads a wide range of values,
and the improvement over MAE without smoothing (δ = 0)
is not clear.

Additional experiments (not reported here) verified that
there is little dependency between the choice of λ and the
optimal value of δ. The optimal parameters can be identified
by using the cross validation from the training data.

Like pure user-based and item-based approaches, the size
of neighborhood N also influences the performance of our
fusion methods. Fig. 3 shows MAE of SF2 when the number
of neighborhood ratings is varied. The optimal results are
obtained with the neighborhood size between 50 and 100.
We select 50 as our optimal choice.

5.4 Data Sparsity
The next experiments investigate the effect of data spar-

sity on the performance of collaborative filtering in more de-
tail. Fig. 4(a) and (b) compare the behavior of scheme SF1
to that obtained by simply averaging user-based and item-
based approaches, when varying test user sparsity (Fig. 4(a))
and test item sparsity (4(b)). The results indicate that com-
bining user-based and item-based approaches (SF1) consis-
tently improves the recommendation performance regardless
neighborhood sparsity of test users or items.

Next, Fig. 4(c) plots the gain of SF2 over SF1 when vary-
ing overall training user sparsity. The figure shows that
SF2 improves SF1 more and more when the rating data be-
comes more sparse. This can be explained as follows. When
the user-item matrix is less dense, it contains insufficient
test item ratings by similar users (for user-based recom-
mendation), and insufficient similar item ratings by the test
user (for item-based recommendation) as well. Therefore,
smoothing using ratings by similar items made by similar
users improves predictions.

We conclude from these experiments that the proposed
fusion framework is effective at improving the quality of rec-
ommendations, even when only sparse data are available.

5.5 Comparison to Other Methods
We continue with a comparison to results obtained with

other methods, setting λ to 0.7 and δ to 0 for SF1 and

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Num. of Given Rating Per Test User

M
A

E

SF1
Avg. of User−based and Item−based

2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Max Num. of Given Rating Per Test Item

M
A

E

SF1
Avg. of User−based and Item−based

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Sparsity %

M
A

E

SF2
SF1

(a) Test User Sparsity (b) Test Item Sparsity (c) Overall Training User Sparsity

Figure 4: Performance under different sparsity.

Table 3: Comparison with other memory-based approaches. A smaller value means a better performance.
Ratings Given (Test Item): < 5 < 10 < 20 No constrain
Ratings Given (Test User): 5 10 20 5 10 20 5 10 20 5 10 20
SF2 1.054 0.966 1.070 0.995 0.917 0.997 0.945 0.879 0.923 0.825 0.794 0.805
SF1 1.086 1.007 1.097 1.035 0.942 1.024 0.976 0.898 0.936 0.836 0.796 0.809
UBVS 1.129 1.034 1.117 1.052 0.972 1.054 0.996 0.913 0.969 0.891 0.809 0.836
IBVS 1.190 1.055 1.131 1.108 0.992 1.068 1.066 0.954 0.977 0.938 0.842 0.842

(a) Number of Training Users: 100
Ratings Given (Test Item): < 5 < 10 < 20 No constrain
Ratings Given (Test User): 5 10 20 5 10 20 5 10 20 5 10 20
SF2 0.960 0.945 0.948 0.915 0.875 0.885 0.826 0.802 0.828 0.806 0.786 0.803
SF1 0.976 0.960 0.963 0.927 0.883 0.895 0.832 0.804 0.831 0.808 0.786 0.804
UBVS 1.108 1.028 1.024 1.070 0.962 0.972 0.914 0.842 0.885 0.879 0.811 0.848
IBVS 1.187 1.071 1.034 1.122 1.006 0.976 0.974 0.875 0.886 0.921 0.840 0.847

(b) Number of Training Users: 200
Ratings Given (Test Item): < 5 < 10 < 20 No constrain
Ratings Given (Test User): 5 10 20 5 10 20 5 10 20 5 10 20
SF2 0.956 0.908 0.941 0.911 0.885 0.912 0.842 0.828 0.859 0.798 0.782 0.805
SF1 1.013 0.968 0.977 0.928 0.908 0.938 0.847 0.834 0.867 0.802 0.783 0.807
UBVS 1.024 0.971 1.044 0.966 0.919 0.980 0.921 0.877 0.936 0.886 0.808 0.852
IBVS 1.117 1.043 1.024 1.044 0.990 1.004 0.962 0.910 0.932 0.914 0.837 0.850

(c) Number of Training Users: 300

using λ = 0.7 and δ = 0.7 for SF2. We first compare our
results to the standard user-based vector similarity (UBVS)
approach of [1] and the item-based adjusted cosine similarity
(IBVS) of [15]. We report results for test user sparsity 5,
10, or 20, and test item sparsity ‘< 5’, ‘< 10’, ‘< 20’ or ‘No
constrain’. Table 3 summarizes the results, showing how
SF1 and SF2 outperform the other methods in all twelve
resulting configurations.

Next, we adopt the subset of MovieLens (see [9, 19]),
which consists of 500 users and 1000 items. We followed
the exact evaluation procedure described in [19] to compare
the performance of our SF2 scheme with the state-of-art re-
sults listed in [19]. Table 4 presents our experimental results,
as well as the four best methods according to their exper-
iments, i.e., cluster-based Pearson Correlation Coefficient
(SCBPCC) [19], the Aspect Model (AM) ([7]), ‘Personality
Diagnosis’ (PD) ([12]) and the user-based Pearson Correla-
tion Coefficient (PCC) ([1]). Our method outperforms these
methods in all configurations.

6. CONCLUSIONS
We proposed a novel algorithm to unify the user-based

and item-based collaborative filtering approaches to over-
come limitations specific to either of them. We showed that
user-based and item-based approaches are only two special
cases in our probabilistic fusion framework. Furthermore,
by using a linear interpolation smoothing, other ratings by
similar users towards similar items can be treated as a back-

ground model to smooth the rating predictions. The exper-
iments showed that our new fusion framework is effective
in improving the prediction accuracy of collaborative filter-
ing and dealing with the data sparsity problem. In the fu-
ture, we plan to conduct better formal analyses of the fusion
model and more complete comparisons with previous meth-
ods.

7. REFERENCES
[1] J. S. Breese, D. Heckerman, and C. Kadie. Empirical

analysis of predictive algorithms for collaborative
filtering. In Proc. of UAI, 1998.

[2] J. Canny. Collaborative filtering with privacy via
factor analysis. In Proc. of SIGIR, 1999.

[3] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[4] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval Journal,
4(2):133–151, July 2001.

[5] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proc. of SIGIR, 1999.

[6] D. Hiemstra. Term-specific smoothing for the
language modeling approach to information retrieval:
the importance of a query term. In Proc. of SIGIR,
pages 35–41, 2002.

Table 4: Comparison with the result reported in [19]. A smaller value means a better performance.
Num. of Training Users: 100 200 300
Ratings Given (Test User): 5 10 20 5 10 20 5 10 20
SF2 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778
AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796
PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789
PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820

[7] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Info. Syst., Vol 22(1):89–115,
2004.

[8] Z. Huang, H. Chen, and D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem
in collaborative filtering. ACM Trans. Inf. Syst.,
22(1):116–142, 2004.

[9] R. Jin, J. Y. Chai, and L. Si. An automatic weighting
scheme for collaborative filtering. In Proc. of SIGIR,
2004.

[10] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On
combining classifiers. IEEE Trans. Pattern Anal.
Mach. Intell., 20(3):226–239, 1998.

[11] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, Jan/Feb.:76–80, 2003.

[12] D. M. Pennock, E. Horvitz, S. Lawrence, and C. Giles.
Collaborative filtering by personality diagnosis: a
hybrid memory and model based approach. In Proc. of
UAI, 2000.

[13] J. D. M. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proc. of ICML, 2005.

[14] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In Proc. of ACM
CSCW, 1994.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proc. of the WWW Conference, 2001.

[16] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Application of dimensionality reduction in
recommender system – a case study. In Proc. of ACM
WebKDD Workshop, 2000.

[17] L. Si and R. Jin. Flexible mixture model for
collaborative filtering. In ICML, 2003.

[18] J. Wang, A. P. de Vries, and M. J. Reinders. A
user-item relevance model for log-based collaborative
filtering. In Proc. of ECIR06, London, UK, 2006.

[19] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu,
and Z. Chen. Scalable collaborative filtering using
cluster-based smoothing. In Proc. of SIGIR, 2005.

APPENDIX

A. NORMALIZATION
We first normalize the matrix by subtracting the average

item ratings:

n(xa,b)I = xa,b −
1

K

∑
i

xi,b = xa,b − x̄b

where n(xa,b)I normalizes ratings by subtracting the mean
item rating. x̄b is the average rating of item b.

We normalize again by the average user rating:

n(xa,b)I,U

= n(xa,b)I −
1

M

∑
j

n(xa,j)I

= xa,b −
1

K

∑
i

xi,b −
1

M

∑
j

(
xa,j −

1

K

∑
i

xi,j

)
= xa,b −

1

K

∑
i

xi,b −
1

M

∑
j

xa,j +
1

MK

∑
i,j

xi,j

= xa,b − x̄b − x̄a + x̄

where n(xa,b)I,U is the normalization of both item and user
aspects. x̄a is the average rating from user a. x̄ is the
average of all the ratings. From here, we see that the result
does not depend on the order of normalization (whether to
normalize first by user or by item).

Treating each normalized individual rating as individual
predictor results in:

x̂k,m − x̄m − x̄k + x̄ = xa,b − x̄b − x̄a + x̄

∴ pk,m(xa,b) = x̂k,m = xa,b − (x̄a − x̄k)− (x̄b − x̄m)

B. A UNIFIED WEIGHTING FUNCTION
More specifically, replacing three conditional probabilities

with Eq. 15, the following can be derived from Eq. 13:

x̂k,m

=

|r|∑
r=1

r
(∑

pk,m(xa,b)=r

(∑
xa,b∈SUR

A +
∑

xa,b∈SIR

B +
∑

xa,b∈SUIR

C
))

=
∑

∀xa,b:xa,b∈SUR

pk,m(xa,b)A +
∑

∀xa,b:xa,b∈SIR

pk,m(xa,b)B+

∑
∀xa,b:xa,b∈SUIR

pk,m(xa,b)C

where

A =
su(uk,ua)∑

∀xa,b:xa,b∈SUR

su(uk,ua)
λ(1− δ)

B =
si(im, ib)∑

∀xa,b:xa,b∈SIR

si(im, ib)
(1− λ)(1− δ)

C =
sui(xk,m, xa,b)∑

∀xa,b:xa,b∈SUIR

sui(xk,m, xa,b)
δ

where A,B and C act as the weights to combine the pre-
dictors from three different sources. Unifying them we can
obtain Eq. 16.

